Tetrahedron Letters No. 28, pp 2449 - 2452, 1974. Pergamon Press. Printed in Great Britain.

 π Donor and π Acceptor Substituent Effects in the Thermal Rearrangement of 9-Substituted <u>cis</u>-Bicyclo[6.1.0]nona-2,4,6-trienes¹

Gernot Boche und Gaby Schneider

Institut für Organische Chemie der Universität, 8 München 2, Karlstr. 23

Germany

(Received in UK 20 May 1974; accepted for publication 6 June 1974)

<u>cis</u>-Bicyclo[6.1.0]nona-2,4,6-triene² (<u>1a</u>) rearranges at 90^o to <u>cis</u>-8,9-dihydroindene (<u>2a</u>) and <u>trans</u>-8,9-dihydroindene in a 9:1 ratio². The <u>anti</u>-9-substituted <u>cis</u>-bicyclo[6.1.0]nona-2,4,6-trienes <u>1b</u>³, <u>1c</u>⁴, <u>1d</u>⁵, <u>1e</u>⁶ and <u>1f</u>⁸, which can attain a "folded" conformation⁹, also rearrange to <u>cis</u>-8,9-dihydroindenes <u>2b</u> - <u>2f</u> preferentially, the <u>cis</u> ring junction being revealed by the coupling constant of the 8,9-bridgehead hydrogens.^{2,3,8,10}

One can, therefore, assume the same mechanistic scheme for the thermal reorganization of $\underline{1}\underline{a} - \underline{f}$ to $\underline{2}\underline{a} - \underline{f}$ and compare the rate of the substituted derivatives with the rate of the parent compound. According to R.Hoffmann¹¹ and H.Günther¹², π donors should weaken and π acceptors should strengthen the C¹-C⁸ bond, which is broken in this process.

We followed the rearrangement kinetically by measuring the rate of disappearance of absorption in the nmr due to H^1 , H^8 and H^9 of <u>1a</u> - <u>f</u>. The results are shown in Table <u>1</u>.

R	k ₈₀ 0·10 ⁷ (sec ⁻¹)	∆G [‡] (kcal/mole)	∆H ^{‡f} (kcal/mole)	۵s ^{‡f} (e.u.)
cl ^{a,c}	4400	26.0	25.0	-2.3
осн ₃ а	3200	26.3	24.6	-5.2
H ^a ,d	412	27.9	26.1	-5.1
с _{6^н5^b}	75.8	29.1	27.6	-4.2
_{CN} b,e	5.17	31.0	32.3	3.8
со ₂ сн ₃ ь	3.72	31.2	32.4	3.3

Table 1: Kinetics of the Isomerization of 1a - f to 2a - f.

a solvent CCl_4 ; b solvent C_6H_5CN ; c cf.ref. 3c; d A.G.Anastassiou and R.C.Griffith, Chem.Comm. <u>1971</u>, 1301, obtained $\Delta H^{\ddagger} = 26$ kcal/mole and $\Delta S^{\ddagger} = -5$ e.u.; e cf.ref. 7; f experimental error: $\Delta H^{\ddagger} = \pm 1.2$ kcal/mole; $\Delta S^{\ddagger} = \pm 3.2$ e.u.

The substituent effect is significant: $\Delta\Delta G^{\ddagger}$ is 5.2 kcal/mole! As predicted,^{11,12} with π donors (Cl, OCH₃) in position 9 of $\underline{1}$, the opening of the 1 - 8 cyclo-propane bond is facilitated, and ΔG^{\ddagger} of the rearrangement is smaller than in 1a*

* P.v.R.Schleyer and K.Kunde (private communication, March 16, 1973) have measured the rearrangement of <u>anti-9-fluoro-cis-bicyclo[6.1.0]</u>nonatriene. This is the compound with the largest rate of rearrangement: $k_{80^{\circ}} = 3.63 \cdot 10^{-3} \text{ sec}^{-1}$, $\Delta G^{\dagger}_{80^{\circ}} = 24.8 \text{ kcal/mole}$, $\Delta H^{\ddagger} = 24.1 \text{ kcal/mole}$, $\Delta S^{\ddagger} = -1.8 \text{ e.u.}$

On the other hand, typical π acceptor substituents (CN, CO₂CH₃), which strengthen the 1 - 8 bonds, raise ΔG^{\pm} substantially. The effect of π acceptors in systems of this kind is conjectured to be greater than that of π donors¹³. The phenyl group apparently functions as an acceptor, which is also the case in the cycloheptatriene - norcaradiene equilibrium^{11,14}.

Unfortunately, it is impossible to determine whether the observed effect is essentially a ground state or a ground state and transition state effect. all-<u>cis</u>-cyclononatetraenes $\underline{3}$ are likely intermediates in the rearrangement $\underline{1} \neq \underline{2}$ since $\underline{1}\underline{a}$ rearranges virtually instantaneously at 90° to $\underline{2}\underline{a}^{15}$. But there is no definite information whether $\underline{3}$ is formed directly from $\underline{1}$, or whether $\underline{1}$ first rearranges in a Cope rearrangement to <u>cis</u>-bicyclo[5.2.0]nona-2,5,8-trienes $\underline{4}$, and then isomerizes to $\underline{3}$.

References

- Part of a lecture presented at the University of Göttingen, November 27, 1972
- 2. E.Vogel and H.Kiefer, Angew.Chem. 73, 548 (1961)
- 3. a cf.ref. 3; b E.A.Lalancette and R.E.Benson, J.Amer.Chem.Soc. <u>87</u>, 1941
 (1965); c J.C.Barborak, T.-M.Su, P.V.R.Schleyer, G.Boche and G.Schneider,
 J.Amer.Chem.Soc. <u>93</u>, 279 (1971)
- 4. Th.J.Katz and P.J.Garratt, J.Amer.Chem.Soc. 86, 5194 (1964)
- 5. <u>1d</u> has been prepared from $C_8H_8K_2$ and $C_6H_5CHCl_2$, mp. 58-60[°]; nmr (60 MHz, neat) $H^{1,8}$ (τ = 8.24, 2 H), H^9 (τ = 8.50, 1 H), A2B-pattern, $J_{1,9}$ = 5.8 Hz.
- 6. <u>1e</u>, mp. 91-92^O, has been synthesized from the ester <u>1f</u> by conventional methods; nmr (60 MHz, CDCl₃) H^{1,8} (τ = 7.87, 2 H-d, J = 5.5 Hz); H⁹ (τ = 8.97, 1 H-t, J = 5.5 Hz). D.Martens, Diplomarbeit Universität München 1971; cf.ref. 7.
- 7. A.G.Anastassiou and R.C.Griffith, Tetrahedron Lett. <u>1973</u>, 3067, published a different route to <u>1e</u>, and measured its rearrangement to <u>2e</u> ($\Delta G_{139}^{\ddagger} \circ = 30.9 \text{ kcal/mole}$)
- 8. a E.Vogel, W.Wiedemann, H.Kiefer and W.F.Harrison, Tetrahedron Lett. <u>1963</u>, 673; b K.F.Bangert and N.Boekelheide, Chem.Ind. (London) <u>1963</u>, 1121;
 c G.L.Fonken and W.Moran, Chem.Ind. (London) <u>1963</u>, 1841; d M.B.Sohn, M.Jones, Jr., B.Fairless, J.Amer.Chem.Soc., 94, 4774 (1972)
- For recent reviews on this field of current interest see S.W.Staley, Intra-Sci.Chem.Rep., <u>5</u>, 149 (1971); J.E.Baldwin, H.A.Andrist and R.K.

Pinschmidt, Jr., J.Amer.Chem.Soc. <u>94</u>, 5845 (1972)

- 10. $\underline{2}\underline{b}$, $J_{8,9} = 12$ Hz; $\underline{2}\underline{d}$, $J_{8,9} = 12$ Hz; $\underline{2}\underline{e}$, $J_{8,9} = 11.5$ Hz⁷
- 11. R.Hoffmann, Tetrahedron Lett. 1970, 2907
- 12. H.Günther, Tetrahedron Lett. 1970, 5173
- R.Hoffmann, H.Fujimoto, J.R.Swenson and C.-C.Wan, J.Amer.Chem.Soc. <u>95</u>, 7644 (1973)
- 14. T.Mukai, H.Kubota and T.Toda, Tetraledron Lett. 1967, 3581
- 15. G.Boche, H.Böhme and D.Martens, Angew.Chem.Int.Ed.Engl. <u>8</u>, 594 (1969); G.Masamune, P.M.Baker and K.Hojo, Chem.Commun. <u>1969</u>, 1203; A.G.Anastassiou, V.Orfanos and J.H.Gebrian, Tetrahedron Lett. <u>1969</u>, 4491; P.Radlick and G.Alford, J.Amer.Chem.Soc. 91, 6529 (1969).